Parsing Algorithms

CS 4447/CS 9545 -- Stephen Watt University of Western Ontario

The Big Picture

- Develop parsers based on grammars
- Figure out properties of the grammars
- Make tables that drive parsing engines
- Two essential ideas: *Derivations* and *FIRST/FOLLOW sets*

Outline

- Grammars, parse trees and derivations.
- Recursive descent parsing
- Operator precedence parsing
- Predictive parsing
	- *FIRST* and *FOLLOW*
	- LL(1) parsing tables. LL(k) parsing.
- Left-most and right-most derivations
- Shift-reduce parsing
	- LR parsing automaton. LR(k) parsing.
	- LALR(k) parsing.

Example Grammar G1

• We have seen grammars already. Here is an example.

[from *Modern Compiler Implementation in Java*, by Andrew W. Appel]

\n1.
$$
S \rightarrow S
$$
 ";" S
\n2. $S \rightarrow \text{id}$ ":=" E
\n3. $S \rightarrow$ "print" "(" L ")"
\n4. $E \rightarrow \text{id}$
\n5. $E \rightarrow \text{num}$
\n6. $E \rightarrow E$ "+" E
\n7. $E \rightarrow$ "(" S ";" E ")"
\n8. $L \rightarrow E$ ";" E
\n9. $L \rightarrow L$ ";" E \n

Parse Trees

• A *parse tree*

for a given grammar and input

- is a tree where
	- each node corresponds to a grammar rule, and the leaves correspond to the input.

Example Parse Tree

• Consider the following input:

a := 7; b := c + (d := 5 + 6, d)

• This gives the *token* sequence:

```
id := num; id := id +(id := num + num, id)
```
• Using example grammar G1, this has a parse tree shown on the right.

Derivations

- "Parsing" figures out a parse tree for an given input
- A "derivation" gives a rationale for a parse.
- Begin with the grammar's start symbol and repeatedly replace non-terminals until only terminals remain.

Example Derivation

This derivation justifies the parse tree we showed.

S S S S $id := E$ $id := E$; $id := E$ $id := num$; $id := E$ $id := num$; $id := E + E$ $id := num$; $id := E + (S, E)$ $id := num$; $id := id + (S, E)$ $id := num$; $id := id + (id := E , E)$ $id := num$; $id := id + (id := E + E, E)$ $id := num$; $id := id + (id := E + E, id)$ $id := num$; $id := id + (id := num + E, id)$ $id := num$; $id := id + (id := num + num, id)$

Derivations and Parse Trees

- A node in a parse tree corresponds to the use of a rule in a derivation.
- A grammar is *ambiguous* if it can derive some sentence with two *different* parse trees.

E.g. $a + b * d$ can be derived two ways using the rules $E \rightarrow id$ $E \rightarrow E$ "+" E $E \rightarrow E$ "*" E

• Even for an unambiguous grammar, there is a choice of which non-terminal to replace in forming a derivation.

Two choices are

- Replace the leftmost non-terminal
- Replace the rightmost non-terminal

Recursive Descent Parsing

- Example for recursive descent parsing:
	- $1. S \rightarrow E$
	- 2. $E \rightarrow T$ "+" E 3. $E \rightarrow T$ $4. T \rightarrow F$ "*" T 5. T $\rightarrow F$
	- 6. $F \rightarrow P$ "^" $F \rightarrow P$
	- $8. P \rightarrow id$ 9. $P \rightarrow num$ 10. $P \rightarrow "("E")"$
- Introduce one function for each non-terminal.

Recursive Descent Parsing (cont'd)

```
PT* S() { return E(); }
PT* E() { PT *pt = T();
           if (peek("+")) { consume("+"); pt = mkPT(pt,E()); }
           return pt; }
PT* T() { PT *pt = F();
           if (peek("*")) { consume("*"); pt = mkPT(pt,F()); }
           return pt; }
PT* F() { PT *pt = P();
           if (peek(^{\mathsf{w}\wedge\mathsf{w}})) { consume(^{\mathsf{w}\wedge\mathsf{w}}); pt = mkPT(pt,P()); }
           return pt; }
PT* P() { PT *pt;
           if (peekDigit()) return new PT(Num());
           if (peekLetter()) return new PT(Id());
           consume("("); pt = E(); consume(")");
           return pt; }
```
Recursive Descent Parsing -- Problems

- A slightly different grammar (G2) gives problems, though:
	- $1. S \rightarrow E$
	- 2. $E \rightarrow E$ "+" T 3. $E \rightarrow T$ $4. T \rightarrow T$ "*" F 5. T \rightarrow F $6. F \rightarrow P$ "^" F 7. F $\rightarrow P$ $8. P \rightarrow id$ 9. $P \rightarrow num$ 10. $P \rightarrow "("E")"$
- This causes problems, e.g.:
	- Do not know whether to use rule 2 or rule 3 parsing an E.
	- Rule 2 gives an infinite recursion.
- We want to be able to *predict* which rule (which recursive function) to use, based on looking at the current input token.

Operator Precedence Parsing

- Each operator has left- and right- precedence. E.g. 100+101 200×201 301^300
- Group sub-expressions by binding highest numbers first. $A+B \times C \times D^{\wedge} E^{\wedge} F$

A 100 +101 B 200×201 C 200×201 D 301^300 E 301^300 F A 100 +101 B 200×201 C 200×201 D 301^300 (E 301^300 F) A 100 +101 B 200×201 C 200×201 (D 301^300 (E 301^300 F)) A 100 +101 (B 200×201 C) 200×201 (D 301^300 (E 301^300 F)) A 100 +101 ((B 200×201 C) 200×201 (D 301^300 (E 301^300 F)))

 $A+((B \times C) \times (D \wedge (E \wedge F)))$

• Works fine for infix expressions but not well for general CFL.

Predictive Parsing – FIRST sets

- We introduce the notion of "FIRST" sets that will be useful in predictive parsing.
- If **α** is a string of terminals and non-terminals, then FIRST(**α**) is the set of all terminals that may be the first symbol in a string derived from **α.**
- Eg1: For example grammar G1,

```
FIRST(S) = { id, "print" }
```
• Eg2: For example grammar G2,

```
FIRST(T "**" F) = { id, num, "(" } }
```
Predictive Parsing -- good vs bad grammars

• If two productions for the same LHS have RHS with intersecting FIRST sets, then the grammar cannot be parsed using predictive parsing.

E.g. with
$$
E \rightarrow E
$$
 "+" T and $E \rightarrow T$
FIRST(E "+" T) = FIRST(T) = { id, num, "("}

- To use predictive parsing, we need to formulate a different grammar for the same language.
- One technique is to eliminate left recursion:

$$
\begin{array}{ll}\n\text{E.g. replace } E \rightarrow E \text{ "+" T and } E \rightarrow T \\
\text{with } E \rightarrow TE' \text{ } E' \rightarrow \text{ "+" TE'} \text{ } E' \rightarrow \epsilon\n\end{array}
$$

The "nullable" property

- We say a non-terminal is "nullable" if it can derive the empty string.
- In the previous example E' is nullable.

FOLLOW sets

- The "FOLLOW" set for a non-terminal X is the set of terminals that can immediately follow X.
- The terminal t is in FOLLOW(X) if there is a derivation containing Xt.
- This can occur if there is a derivation containing X Y Z t, if Y and Z are nullable.

Algorithm for FIRST, FOLLOW, nullable

```
for each symbol X 
  FIRST[X] := \{\}, FOLLOW[X] := \{\}, nullable[X] := false
```

```
for each terminal symbol t
   FIRST[t] := {t}
```

```
repeat
  for each production X → Y1 Y2 … Yk,
      if all Yi are nullable then 
       nullable[X] := trueif Y1..Yi-1 are nullable then
       FIRST[X] := FIRST[X] U FIRST[Yi]
      if Yi+1..Yk are all nullable then
       FOLLOW[Yi] := FOLLOW[Yi] U FOLLOW[X]
      if Yi+1..Yj-1 are all nullable then
       FOLLOW[Yi] := FOLLOW[Yi] U FIRST[Yj]
```
until FIRST, FOLLOW, nullable do not change

CS4447/CS9545

Example FIRST, FOLLOW, nullable

Example Grammar G3.

Predictive Parsing Tables

- Rows: Non-terminals
- Columns: Terminals
- Entries: Productions

 $Z \rightarrow d$ $Y \rightarrow \epsilon$ $X \rightarrow Y$ $Z \rightarrow XYZ \quad Y \rightarrow c \quad X \rightarrow a$

Enter production $X \rightarrow \alpha$ in row X, column t for each t in FIRST(α).

If α is nullable, enter the productions in row X, column t for each t in FOLLOW(X).

CS4447/CS9545

Example of Predictive Parsing

Initial grammar

- $S \rightarrow E$ $E \rightarrow E$ "+" T $E \rightarrow T$
- $T \rightarrow T$ "*" F $T \rightarrow F$
- $F \rightarrow id$
- $F \rightarrow num$
- $F \rightarrow$ "(" E ")"

Example of Predictive Parsing (contd)

CS4447/CS9545

LL(k) Grammars

- The predictive parser we built makes use of one look ahead token.
	- We say the grammar is LL(1).
	- LL stands for "Left to right parse, Leftmost derivation"
- If k look ahead tokens are needed, then we say the grammar is LL(k).
	- For $k > 1$, the columns are the possible sequences of k tokens, and the tables become large.
- There is a better way...

LR Parsing

- LL parsing always uses a grammar rule for the *left-most* non-terminal.
- If we aren't so eager, we can apply grammar rules to other non-terminals
- This allows us to decide about the "hard" non-terminals later.
- We keep a stack of unfinished work.
- Using the *right-most* derivation leads to LR parsing.

LR Parsing

- Parser state consists of a *stack* and *input.*
- First *k* tokens of the unused input is the *"lookahead"*
- Based on what is on the top of the stack and the lookahead, the parser decides whether to
	- Shift = 1. consume the first input token
		- 2. push it to the top of the stack
	-
	- $-$ Reduce = 1. choose a grammar rule $X \rightarrow AB C$
		- 2. pop C, B, A from the stack
		- 3. push X onto the stack