
Parsing Algorithms

CS 4447/CS 9545 -- Stephen Watt
University of Western Ontario



CS4447/CS9545

The Big Picture
• Develop parsers based on grammars

• Figure out properties of the grammars

• Make tables that drive parsing engines

• Two essential ideas:  
Derivations and FIRST/FOLLOW sets



CS4447/CS9545

Outline

• Grammars, parse trees and derivations.

• Recursive descent parsing

• Operator precedence parsing

• Predictive parsing

– FIRST and FOLLOW

– LL(1) parsing tables.  LL(k) parsing.

• Left-most and right-most derivations

• Shift-reduce parsing

– LR parsing automaton.  LR(k) parsing.

– LALR(k) parsing.



CS4447/CS9545

Example Grammar G1

• We have seen grammars already.
Here is an example. 
[from Modern Compiler Implementation in Java, by Andrew W. Appel]

1. S → S   “;” S
2. S → id  “:=” E
3. S → “print” “(” L  “)”
4. E → id
5. E → num
6. E → E  “+” E
7. E → “(“ S  “,” E  “)”
8. L → E
9. L → L  “,” E



CS4447/CS9545

Parse Trees

• A parse tree
for a given grammar and input

is a tree where 
each node corresponds to a grammar rule, and 
the leaves correspond to the input.



CS4447/CS9545

Example Parse Tree

• Consider the following input:

a := 7; 
b := c + (d := 5 + 6, d)

• This gives the tokentoken sequence:

id := num ; id := id + 
( id :=  num + num , id )

• Using example grammar G1, this has 
a parse tree shown on the right.

S

S ; S

id E:=

num

id := E

( S ; E )

idid := E

E + E

num num



CS4447/CS9545

Derivations

• “Parsing” figures out a parse tree for an given input

• A “derivation” gives a rationale for a parse.

• Begin with the grammar’s start symbol and repeatedly replace 
non-terminals until only terminals remain.



CS4447/CS9545

Example Derivation
S

S ; S

S ; id := E

id := E ; id := E

id := num ; id := E

id := num ; id := E + E

id := num ; id := E + ( S, E )

id := num ; id := id + ( S , E )

id := num ; id := id + ( id := E , E )

id := num ; id := id + ( id := E + E, E)

id := num ; id := id + ( id := E + E, id)

id := num ; id := id + (id := num + E, id)

id := num ; id := id + (id := num + num, id)

This derivation 
justifies the parse 
tree we showed.



CS4447/CS9545

Derivations and Parse Trees
• A node in a parse tree corresponds to the use of a rule in a 

derivation.

• A grammar is ambiguous if it can derive some sentence with 
two different parse trees. 

E.g.   a + b * d  can be derived two ways using the rules
E → id            E → E “+” E           E → E “*” E

• Even for an unambiguous grammar, there is a choice of which 
non-terminal to replace in forming a derivation. 

Two choices are 
– Replace the leftmost non-terminal
– Replace the rightmost non-terminal



CS4447/CS9545

Recursive Descent Parsing

• Example for recursive descent parsing:

1. S → E

2. E → T “+” E 3. E → T

4. T → F “*” T 5. T → F

6. F → P “^” F 7. F → P

8. P → id 9. P → num 10. P → “(” E “)”

• Introduce one function for each non-terminal.



CS4447/CS9545

Recursive Descent Parsing (cont’d)
PT* S() { return E(); }

PT* E() { PT *pt = T();
if (peek(“+”)) { consume(“+”); pt = mkPT(pt,E()); }
return pt; }

PT* T() { PT *pt = F();
if (peek(“*”)) { consume(“*”); pt = mkPT(pt,F()); }
return pt; }

PT* F() { PT *pt = P();
if (peek(“^”)) { consume(“^”); pt = mkPT(pt,P()); }
return pt; }

PT* P() { PT *pt;
if (peekDigit())  return new PT(Num());
if (peekLetter()) return new PT(Id());
consume(“(”); pt = E(); consume(“)”);
return pt; }



CS4447/CS9545

Recursive Descent Parsing -- Problems

• A slightly different grammar (G2) gives problems, though:

1. S → E

2. E → E “+” T 3. E → T

4. T → T “*” F 5. T → F

6. F → P “^” F 7. F → P

8. P → id 9. P → num 10. P → “(” E “)”

• This causes problems, e.g.:

– Do not know whether to use rule 2 or rule 3 parsing an E.

– Rule 2 gives an infinite recursion. 

• We want to be able to predict which rule (which recursive 
function) to use, based on looking at the current input token.



CS4447/CS9545

Operator Precedence Parsing

• Each operator has left- and right- precedence. E.g.
100+101 200×201 301^300

• Group sub-expressions by binding highest numbers first.
A+B × C × D ^ E ^ F

A 100 +101 B 200×201 C 200×201 D 301^300 E 301^300 F

A 100 +101 B 200×201 C 200×201 D 301^300 (E 301^300 F)

A 100 +101 B 200×201 C 200×201 (D 301^300 (E 301^300 F))

A 100 +101 (B 200×201 C) 200×201 (D 301^300 (E 301^300 F))

A 100 +101 ((B 200×201 C) 200×201 (D 301^300 (E 301^300 F)))

A+((B × C) × (D ^ (E ^ F)))

• Works fine for infix expressions but not well for general CFL.



CS4447/CS9545

Predictive Parsing – FIRST sets

• We introduce the notion of “FIRST” sets that will be useful in 
predictive parsing.

• If α is a string of terminals and non-terminals, then FIRST(α) is 
the set of all terminals that may be the first symbol in a string 
derived from α.

• Eg1:  For example grammar G1,

FIRST(S)  = { id, “print” } 

• Eg2:  For example grammar G2,

FIRST(T “*” F) = { id, num, “(” }



CS4447/CS9545

Predictive Parsing -- good vs bad grammars

• If two productions for the same LHS have RHS with intersecting 
FIRST sets, then the grammar cannot be parsed using 
predictive parsing.

E.g.  with E → E “+” T   and   E → T  
FIRST(E “+” T) = FIRST(T) = { id, num, “(”}

• To use predictive parsing, we need to formulate a different 
grammar for the same language.

• One technique is to eliminate left recursion:

E.g.  replace E → E “+” T   and   E → T 
with      E → T E’ E’ → “+” T E’ E’ → ε



CS4447/CS9545

The “nullable” property

• We say a non-terminal is “nullable” if it can derive the empty 
string.

• In the previous example E’ is nullable.



CS4447/CS9545

FOLLOW sets

• The “FOLLOW” set for a non-terminal X is the set of terminals 
that can immediately follow X. 

• The terminal t is in FOLLOW(X) if there is a derivation 
containing Xt.

• This can occur if there is a derivation containing 
X Y Z t, if Y and Z are nullable.



CS4447/CS9545

Algorithm for FIRST, FOLLOW, nullable

for each symbol X 
FIRST[X] := { }, FOLLOW[X] := { }, nullable[X] := false

for each terminal symbol t
FIRST[t] := {t}

repeat
for each production X → Y1 Y2 … Yk,

if all Yi are nullable then 
nullable[X] := true

if Y1..Yi-1 are nullable then
FIRST[X] := FIRST[X] U FIRST[Yi]

if Yi+1..Yk are all nullable then
FOLLOW[Yi] := FOLLOW[Yi] U FOLLOW[X]

if Yi+1..Yj-1 are all nullable then
FOLLOW[Yi] := FOLLOW[Yi] U FIRST[Yj]

until FIRST, FOLLOW, nullable do not change



CS4447/CS9545

Example FIRST, FOLLOW, nullable

Example Grammar G3.

Z → d Y →ε X → Y

Z → X Y Z Y → c X → a

nullable FIRST FOLLOW

X false a c d

Y true c d

Z false d

nullable FIRST FOLLOW

X true a c a c d

Y true c a c d

Z false a c d

nullable FIRST FOLLOW

X false

Y false

Z false



CS4447/CS9545

Predictive Parsing Tables

• Rows:  Non-terminals

• Columns: Terminals

• Entries: Productions

a c d 

X X → a

X → Y

X → Y X → Y

Y Y →ε Y →ε

Y →c

Y →ε

Z Z → X Y Z Z → XYZ Z → d

Z → X Y Z

Z → d Y →ε X → Y
Z → X Y Z Y → c X → a

Enter production X →α in row X, column t  for each t in FIRST(α).

If α is nullable, enter the productions in row X, column t 
for each t in FOLLOW(X).

nullable FIRST FOLLOW

X true a c a c d

Y true c a c d

Z false a c d



CS4447/CS9545

Example of Predictive Parsing
Initial grammar
S → E

E → E “+” T E → T

T → T “*” F T → F

F → id

F → num 

F → “(” E “)”

Modified grammar
S → E $

E → T E’ E’ → E’ → “+” T E’

T → F T’ T’ → T’ → “*” F T’

F → id

F → num 

F → “(” E “)”

Nullable FIRST FOLLOW

S False ( id num

E False ( id num ) $

E’ True + ) $

T False ( id num ) + $

T’ True * ) + $

F False ( id num ) * + $



CS4447/CS9545

Nullable FIRST FOLLOW

S False ( id num

E False ( id num ) $

E’ True + ) $

T False ( id num ) + $

T’ True * ) + $

F False ( id num ) * + $

+ * id num ( ) $

S S → E$ S → E$ S →E$

E E →TE’ E →TE’ E →TE’

E’ E’ →“+” T E’ E’ → E’ →

T T →FT’ T →FT’ T →FT’

T’ T’ → T’ →“*” F T’ T’ → T’ →

F F →id F →num F →“(” E “)”

S → E $
E → T E’ E’ → E’ → “+” T E’
T → F T’ T’ → T’ → “*” F T’
F → id
F → num 
F → “(” E “)”

Example of Predictive Parsing (contd)



CS4447/CS9545

LL(k) Grammars

• The predictive parser we built makes use of one look 
ahead token.

– We say the grammar is LL(1).

– LL stands for “Left to right parse, Leftmost derivation”

• If k look ahead tokens are needed, then we say the 
grammar is LL(k).

– For k > 1, the columns are the possible sequences of k 
tokens, and the tables become large.

• There is a better way…



CS4447/CS9545

LR Parsing

• LL parsing always uses a grammar rule for  the left-most
non-terminal.

• If we aren’t so eager, we can apply grammar rules to other 
non-terminals 

• This allows us to decide about the “hard” non-terminals later.
• We keep a stack of unfinished work.
• Using the right-most derivation leads to LR parsing.  



CS4447/CS9545

LR Parsing

• Parser state consists of a stack and input.

• First k tokens of the unused input is the “lookahead”

• Based on what is on the top of the stack and the lookahead, 
the parser decides whether to

– Shift = 1. consume the first input token
2. push it to the top of the stack

– Reduce = 1. choose a grammar rule X → A B C
2. pop C, B, A from the stack
3. push X onto the stack


